An algorithm for direct causal learning of influences on patient outcomes

نویسندگان

  • Chandramouli Rathnam
  • Sanghoon Lee
  • Xia Jiang
چکیده

OBJECTIVE This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms. METHOD The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival. RESULTS DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. CONCLUSION Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Just Trust Me: The Essential Demand of Operating Room Students

Clinical education is the central part of medical education (1). The importance of learning atmosphere in fostering professional development and role socialization have been well documented (2, 3) The operating room (OR) is a complicated system, which coordinates the person, technology, and patient in a physical environment for achieving optimal outcomes (4). According to Sigurdsson, "OR as a f...

متن کامل

Causal discovery from medical textual data

Medical records usually incorporate investigative reports, historical notes, patient encounters or discharge summaries as textual data. This study focused on learning causal relationships from intensive care unit (ICU) discharge summaries of 1611 patients. Identification of the causal factors of clinical conditions and outcomes can help us formulate better management, prevention and control str...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Supervising Feature Influence

Causal influence measures for machine learnt classifiers shed light on the reasons behind classification, and aid in identifying influential input features and revealing their biases. However, such analyses involve evaluating the classifier using datapoints that may be atypical of its training distribution. Standard methods for training classifiers that minimize empirical risk do not constrain ...

متن کامل

Estimating Causal Power between Binary Cause and Continuous Outcome

Previous studies of causal learning heavily focused on binary outcomes; little is known about causal learning with continuous outcomes. The present paper proposes a qualitative extension of the causal power theory to the situation where a binary cause influences a continuous effect, and induces causal power under various ceiling situations with the continuous outcomes. To test the predictions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2017